MODEL SPASIAL PREDIKTIF BAHAYA BULLYING DI KOTA DEPOK

04 December 2024

By: Azhari Al Kautsar,S.Geo

Open Project

Lokasi Penelitian

Open Project

Generalize Boost Bullying Depok

Open Project

INLA Bullying Predicted Depok COPY

Masih dalam pengembangan

PENDAHULUAN

Salah satu dari penelitian model spasial prediktif dari Battista et al. (2023) adalah hubungan kesehatan jiwa usia pelajar dengan pemodelan decision tree. Hasil dari model decision tree menunjukkan tingkat risiko kesehatan jiwa pada usia sekolah. Maka dari itu, kerentanan perundungan (bullying) dapat dilihat dari tingkat risiko kesehatan jiwa pada individu anak maupun remaja. Kejahatan bullying dipaparkan dari Useche et al. (2023) sebagai ketimpangan gender atas relasi kekuasaan yang disebabkan oleh faktor intimidasi antar individu maupun individu dengan kelompok. Faktor ini sering kali terjadi pada usia remaja.

Kejadian prediksi bahaya bullying bisa melalui kejahatan berbasis siber. Eboy et al. (2024) merancang spatial modelling predictive menggunakan beberapa parameter seperti integrasi survei lapangan, statistik, dan SIG. Ketiga parameter itu menghasilkan tingkat risiko bullying seperti risiko koneten, risiko pengaturan, dan risiko persetujuan yang bersangkutan. Risiko bullying juga dipaparkan oleh Tramontano et al. (2020) yang menunjukkan adanya gradien tingkat bahaya perundungan di lingkungan sekolah sehingga perlu menginvestigasi agar menciptakan lingkungan belajar dan mengajar yang lebih humanis.

Perilaku bullying juga merambah pada skala media sosial. Menurut Al-Garadi et al. (2019) perundungan sering terjadi berbagai macam aplikasi media sosial. Untuk mengetahui tingkat bahaya bullying melalui model big data yang bisa menggali informasi perilaku perundung secara keruangan. Pemanfaatan model spasial prediktif bisa mengidentifikasi cara-cara usia pelajar melakukan kekerasan berbasis daring berbasis machine learning. Pengembangan machine learning dilanjutkan oleh Song & Song (2021)menggunakan pohon Keputusan (decision tree). Dari penggunaan decision tree menunjukkan adanya kesenjangan jumlah korban dengan pelaku perundungan di lingkungan sekolah melalui penggunaan media sosial.

Tujuan dari penelitian ini adalah untuk memprediksi spasial tingkat bahaya bullying di Kota Depok. Kemudian tujuan lainnya adalah seberapa penggunaan data lokasi pendidikan terhadap potensi prediksi kekerasan bullying pada usia remaja di Kota Depok.

METODE PENELITIAN

Lokasi Penelitian

Lokasi penelitian ini berada di seluruh Kecamatan di Kota Depok dengan Koordinat….. . Kota Depok mempunyai sepuluh kecamatan, yaitu Beji, Bojongsari, Cilodong, Cimanggis, Cinere, Cipayung, Limo, Pancoran Mas, Sawangan, dan Tapos. Kota Depok berbatasan dengan Provinsi DKI Jakarta di sebelah utara, Kota Bekasi di sebelah timur, Kabupaten Bogor di sebelah selatan, dan Kota Tangerang Selatan di sebelah barat.

Gambar 1

Bahan Penelitian

Bahan pada penelitian merupakan berasal dari sumber data sekunder. Data tersebut akan di jelaskan pada tabel 1.

Tabel 1

Analisis Data

1. Kriging

Analisis spasial seperti kriging sangat penting dalam penelitian ini untuk memprediksi kejadian bullying di Kota Depok. Metode analisis kriging memainkan peran menjumlahkan atau memperluas objek agar dapat mampu mengvisualkan spasial. Dengan begitu, data kriging bersifat acak dan menyuluruh agar memperkuat koefisien dari prediksi pemodelan spasial. Konsep formulasi kriging dikemukakan oleh Hardiyanthy & Susanti (2019) adalah sebagai berikut :

Rumus 1

2. Analisis Multi-Kriteria

Pada metode analisis multi-kriteria bertujuan untuk mengkalkulasi skor dari terendah ke tertinggi pada parameter tertentu. Parameter untuk analisis multi-kriteria pada model spasial prediktif bahaya bullying adalah menggunakan data pendidikan, pemerintah, tempat ibadah, dan fasilitas kesehatan. Penulis akan merujuk dari Nur et al. (2024) dengan pengubahan nilai bobot agar bisa memudahkan dalam proses perhitungan. Berikut tabel 2 akan membahas skor bobot pada pemodelan spasial prediktif bahaya bullying.

Tabel 2

3. Analisis Regresi

Pada metode analisis penelitian ini menggunakan jenis pemodelan spasial regresi tertentu. Parameter pada analisis regresi ini adalah REML, LMS, OLS, PLS, dan Generilzed Boost.

HASIL PENELITIAN

Kriging

Kriging

Regression Linear Model (RELM)

RELM

RELMB Depok

Data Publications

KLASIFIKASI BIJIH BESI MENGGUNAKAN CITRA HIPERSPEKTRAL DI DAERAH SEKITAR KABUPATEN SLEMAN

Energy

01 Sep 2025

HIMA SAIG UPI

KLASIFIKASI BIJIH BESI MENGGUNAKAN CITRA HIPERSPEKTRAL DI DAERAH SEKITAR KABUPATEN SLEMAN

Pemanfaatan citra hiperspektral PRISMA digabungkan dengan metode Spectral Angle Mapper (SAM) memungkinkan klasifikasi dan pemetaan bijih besi secara detail di wilayah sekitar Kabupaten Sleman, Daerah Istimewa Yogyakarta. Teknologi ini mampu menangkap informasi spektral yang sangat spesifik dari material di permukaan bumi, terutama oksida besi seperti hematit dan magnetit yang dominan dalam bijih besi. Dengan membandingkan sudut spektral antara piksel citra dan spektrum referensi, SAM mengidentifikasi kandungan mineral bijih besi dengan tingkat keakuratan yang diatur melalui nilai batas sudut radian. Nilai batas sudut yang lebih besar memungkinkan deteksi area yang lebih luas namun dengan kemungkinan klasifikasi kurang tepat, sementara threshold kecil menghasilkan klasifikasi yang lebih selektif dan akurat meski cakupan area terdeteksi lebih terbatas. Penelitian ini menemukan distribusi bijih besi yang signifikan di zona vulkanik Gunung Merapi, terutama di sepanjang aliran sungai yang membawa material vulkanik kaya besi. Penggunaan citra hiperspektral dan metode SAM ini memberikan solusi efektif dan efisien dalam eksplorasi mineral dibandingkan metode survei lapangan konvensional dengan biaya dan waktu yang lebih besar.

13 min read

19 view

3 Data

1 Projects

Analisis Spasial Untuk Pemetaan Wilayah Potensial Penyerapan Tenaga Kerja Berdasarkan Kecamatan Di Kota Tasikmalaya Tahun 2024

Social

30 Aug 2025

Nuryabilla Utami

Analisis Spasial Untuk Pemetaan Wilayah Potensial Penyerapan Tenaga Kerja Berdasarkan Kecamatan Di Kota Tasikmalaya Tahun 2024

Pada era digitalisasi, Sistem Informasi Geografis (SIG) menjadi alat penting untuk menganalisis potensi penyerapan tenaga kerja.. Tingkat partisipasi angkatan kerja mencapai 68,92%, namun terdapat 2.619 pencari kerja dan hanya 1.067 yang terserap, menunjukkan adanya mismatch kualifikasi dan ketimpangan distribusi kerja. Analisis spasial ini memetakan faktor-faktor seperti kepadatan penduduk, aksesibilitas, lokasi industri, dan tingkat pendidikan untuk mendukung perencanaan wilayah, pengembangan kawasan industri/UMKM, serta kebijakan peningkatan kesempatan kerja di Kota Tasikmalaya.

27 min read

288 view

1 Projects

Analisis Lokasi Potensial Pengembangan Usaha Mie Ayam di Kota Yogyakarta

Food & Beverages

31 Jul 2025

Muhammad Dwi Arfian

Analisis Lokasi Potensial Pengembangan Usaha Mie Ayam di Kota Yogyakarta

Eksplorasi persebaran titik eksisting tempat makan mie ayam dan melihat potensi peluang baru di tengah-tengah persaingan. Artikel ini menyajikan gambaran dan penjelasan singkat terkait bagaimana persebaran dan kepadatan titik eksisting tempat makan mie ayam di Kota Yogyakarta. Selain itu, juga melihat potensi peluang lokasi baru untuk pengembangan usaha mie ayam. Fitur INSIGHT dari GEO MAPID digunakan dalam proses analisis dalam artikel ini.

11 min read

378 view

Rekomendasi Area Wisata Kuliner UMKM di Kota Wisata Cibubur dan Rute Praktis dengan LRT!

Food & Beverages

02 Aug 2025

Adrien Arum

Rekomendasi Area Wisata Kuliner UMKM di Kota Wisata Cibubur dan Rute Praktis dengan LRT!

Menelusuri area zona emas kuliner di Kota Wisata Cibubur melalui pendekatan spasial. Artikel ini menyajikan analisis lokasi strategis UMKM kuliner rumahan dan rute praktis menuju kawasan dengan dukungan transportasi LRT.

9 min read

481 view

3 Projects

Terms and Conditions
Introductions
  • MAPID is a platform that provides Geographic Information System (GIS) services for managing, visualizing, and analyzing geospatial data.
  • This platform is owned and operated by PT Multi Areal Planing Indonesia, located at